

ARSD College, University of Delhi

Model Course Handout/Lesson Plan

Course Name : B.Sc. (APSIC) Industrial Chemistry							
Semester	Course Code	Course Title		Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
II	Chemistry DSC-C 2	Periodic Properties Chemical bonding	and	2			2
Teacher/Instructor(s)		Dr. Neha Bhardwaj					
Session		2022-2023					

Course Objective:

- The course discusses the periodicity in properties with reference to the s, p and d block, which is necessary in understanding their group chemistry.
- It provides basic knowledge about ionic, covalent and metallic bonding underlining the fact that chemical bonding is best regarded as a continuum between the three cases.
- It provides an overview of hydrogen bonding and van der Waal's forces which influence the melting points, boiling points, solubility and energetics of dissolution of compounds.

Learning Outcomes

On completion of the course, the student will be able to:

- Understand periodicity in ionization enthalpy, electron gain enthalpy, electronegativity and enthalpy of atomization.
- Understand variability in oxidation state, colour, metallic character, magnetic and catalytic properties and ability to form complexes
- Understand the concept of lattice energy using Born-Landé expression.
- Draw Born Haber Cycle and analyse reaction energies.
- Draw the plausible structures and geometries of molecules using VSEPR theory.
- Understand and draw MO diagrams (homo- & hetero-nuclear diatomic molecules).
- Understand the importance and applications of hydrogen and van der Wall bonding.

Lesson Plan:

S. NO.	Learning Objective	Lecture No.	Topics to be covered
I	Periodic Properties	1-2	Electronic configurations of the atoms.
	-	3-4	Stability of half-filled and completely filled orbitals
		5-6	concept of exchange energy, inert pair effect.
		7-8	General group trends of s, p and d block elements with special reference to Ionization Enthalpy

		9-10	Electron Gain Enthalpy, Electronegativity,	
		9-10	Enthalpy of Atomization, oxidation state	
		11-12	colour, metallic character, magnetic and catalytic	
		11-12	properties, ability to form complexes	
II		13-14	Ionic Bonding: General characteristics of ionic bonding, Lattice Enthalpy and Solvation Enthalpy and their relation to stability and solubility of ionic compounds	
		15-16	Born-Lande equation for calculation of Lattice Enthalpy (no derivation)	
		17-18	Born-Haber cycle and its applications, polarizing power and polarizability	
		19-20	Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character	
	Chemical Bonding	21-22	Covalent Bonding: Valence Bond Approach, Hybridization and VSEPR Theory with suitable examples	
		23-24	Concept of resonance and resonating structures in various inorganic and organic compounds, Molecular Orbital Approach: Rules for the LCAO method	
		25-26	bonding, nonbonding and antibonding MOs and their characteristics for s-s, s-p and p-p combinations of atomic orbitals	
		27-28	MO treatment of homonuclear diatomic molecules of 1 _{st} and 2 _{nd} periods (including idea of s-p mixing) and heteronuclear diatomic molecules such as CO, NO and NO+.	
		29-30	Brief introduction to Metallic Bonding, Hydrogen Bonding, van der Waal's Forces	

Evaluation Scheme:

No.	Component	Duration	Marks
	Internal Assessment		
1	• Quiz		
1.	Class Test		20
	Attendance		
	Assignment		
2.	End Semester Examination	2 hr	60

Details of the Course					
Unit	Unit Contents				
1 Periodic Properties	Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy, inert pair effect. General group trends of s, p and d block elements with special reference to Ionization Enthalpy, Electron Gain Enthalpy,	12			

	W dai 5 1 01005	
2 Chemical Bonding	Ionic Bonding: General characteristics of ionic bonding, Lattice Enthalpy and Solvation Enthalpy and their relation to stability and solubility of ionic compounds, Born-Lande equation for calculation of Lattice Enthalpy (no derivation), Born-Haber cycle and its applications, polarizing power and polarizability, Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character. Covalent Bonding: Valence Bond Approach, Hybridization and VSEPR Theory with suitable examples, Concept of resonance and resonating structures in various inorganic and organic compounds, Molecular Orbital Approach: Rules for the LCAO method, bonding, nonbonding and antibonding MOs and their characteristics for s-s, s-p and p-p combinations of atomic orbitals, MO treatment of homonuclear diatomic molecules of 1st and 2nd periods (including idea of s-p mixing) and heteronuclear diatomic molecules such as CO, NO and NO+. Brief introduction to Metallic Bonding, Hydrogen Bonding, van der Waal's Forces	18
	Electronegativity, Enthalpy of Atomization, oxidation state, colour, metallic character, magnetic and catalytic properties, ability to form complexes	

Suggested Books:

Sl. No.	Name of Authors/Books/Publishers	Year of Publication/Repri nt
1	Huheey, J.E.; Keiter, E.A., Keiter; R. L.; Medhi, O.K. (2009), Inorganic Chemistry- Principles of Structure and Reactivity, Pearson Education	2009
2	Shriver, D.D.; Atkins, P.; Langford, C.H. (1994), Inorganic Chemistry 2nd Ed., Oxford University Press.	1994
3	Atkins, P.W.; Overton, T.L.; Rourke, J.P.; Weller, M.T.; Armstrong, F.A. (2010), Inorganic Chemistry , 5th Edition, W. H. Freeman and Company.	2010
4	Lee, J.D.; (2010), Concise Inorganic Chemistry, Wiley India	2010
5	Douglas, B.E.; McDaniel, D.H.; Alexander, J.J. (1994), Concepts and Models of Inorganic Chemistry, John Wiley &	1994

	Sons.		
6	Wulfsberg, G (Private Limited	2002	
7	Miessler, G.L.; Fischer P.J.; Tarr, D. A. (2014), Inorganic Chemistry, 5th Edition, Pearson.		2014
Mode of Evaluation:		Internal Assessment / End Semester Exam	